3.7.15 \(\int (a+a \sin (e+f x))^m (c+d \sin (e+f x))^{3/2} \, dx\) [615]

Optimal. Leaf size=136 \[ \frac {\sqrt {2} (c-d) F_1\left (\frac {1}{2}+m;\frac {1}{2},-\frac {3}{2};\frac {3}{2}+m;\frac {1}{2} (1+\sin (e+f x)),-\frac {d (1+\sin (e+f x))}{c-d}\right ) \cos (e+f x) (a+a \sin (e+f x))^m \sqrt {c+d \sin (e+f x)}}{f (1+2 m) \sqrt {1-\sin (e+f x)} \sqrt {\frac {c+d \sin (e+f x)}{c-d}}} \]

[Out]

(c-d)*AppellF1(1/2+m,-3/2,1/2,3/2+m,-d*(1+sin(f*x+e))/(c-d),1/2+1/2*sin(f*x+e))*cos(f*x+e)*(a+a*sin(f*x+e))^m*
2^(1/2)*(c+d*sin(f*x+e))^(1/2)/f/(1+2*m)/(1-sin(f*x+e))^(1/2)/((c+d*sin(f*x+e))/(c-d))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2867, 145, 144, 143} \begin {gather*} \frac {\sqrt {2} (c-d) \cos (e+f x) (a \sin (e+f x)+a)^m \sqrt {c+d \sin (e+f x)} F_1\left (m+\frac {1}{2};\frac {1}{2},-\frac {3}{2};m+\frac {3}{2};\frac {1}{2} (\sin (e+f x)+1),-\frac {d (\sin (e+f x)+1)}{c-d}\right )}{f (2 m+1) \sqrt {1-\sin (e+f x)} \sqrt {\frac {c+d \sin (e+f x)}{c-d}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(3/2),x]

[Out]

(Sqrt[2]*(c - d)*AppellF1[1/2 + m, 1/2, -3/2, 3/2 + m, (1 + Sin[e + f*x])/2, -((d*(1 + Sin[e + f*x]))/(c - d))
]*Cos[e + f*x]*(a + a*Sin[e + f*x])^m*Sqrt[c + d*Sin[e + f*x]])/(f*(1 + 2*m)*Sqrt[1 - Sin[e + f*x]]*Sqrt[(c +
d*Sin[e + f*x])/(c - d)])

Rule 143

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(b*c
- a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 144

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
(b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 145

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^
FracPart[n]/((b/(b*c - a*d))^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*(b*(c/(b*c -
 a*d)) + b*d*(x/(b*c - a*d)))^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] &&  !GtQ[b/(b*c - a*d), 0] &&  !SimplerQ[c + d*x, a + b*x] &&  !SimplerQ[e +
 f*x, a + b*x]

Rule 2867

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dis
t[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(a + b*x)^(m - 1/2)*((c
+ d*x)^n/Sqrt[a - b*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int (a+a \sin (e+f x))^m (c+d \sin (e+f x))^{3/2} \, dx &=\frac {\left (a^2 \cos (e+f x)\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {1}{2}+m} (c+d x)^{3/2}}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\\ &=\frac {\left (a^2 \cos (e+f x) \sqrt {\frac {a-a \sin (e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {1}{2}+m} (c+d x)^{3/2}}{\sqrt {\frac {1}{2}-\frac {x}{2}}} \, dx,x,\sin (e+f x)\right )}{\sqrt {2} f (a-a \sin (e+f x)) \sqrt {a+a \sin (e+f x)}}\\ &=\frac {\left (a (a c-a d) \cos (e+f x) \sqrt {\frac {a-a \sin (e+f x)}{a}} \sqrt {c+d \sin (e+f x)}\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {1}{2}+m} \left (\frac {a c}{a c-a d}+\frac {a d x}{a c-a d}\right )^{3/2}}{\sqrt {\frac {1}{2}-\frac {x}{2}}} \, dx,x,\sin (e+f x)\right )}{\sqrt {2} f (a-a \sin (e+f x)) \sqrt {a+a \sin (e+f x)} \sqrt {\frac {a (c+d \sin (e+f x))}{a c-a d}}}\\ &=\frac {\sqrt {2} (c-d) F_1\left (\frac {1}{2}+m;\frac {1}{2},-\frac {3}{2};\frac {3}{2}+m;\frac {1}{2} (1+\sin (e+f x)),-\frac {d (1+\sin (e+f x))}{c-d}\right ) \cos (e+f x) (a+a \sin (e+f x))^m \sqrt {c+d \sin (e+f x)}}{f (1+2 m) \sqrt {1-\sin (e+f x)} \sqrt {\frac {c+d \sin (e+f x)}{c-d}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(365\) vs. \(2(136)=272\).
time = 1.36, size = 365, normalized size = 2.68 \begin {gather*} -\frac {3 \sqrt {2} (c+d) F_1\left (\frac {1}{2};\frac {1}{2}-m,-\frac {3}{2};\frac {3}{2};\cos ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right ),\frac {2 d \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{c+d}\right ) \sqrt {1+\sin (e+f x)} (a (1+\sin (e+f x)))^m (c+d \sin (e+f x))^{3/2} \tan \left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{f \sqrt {\cos ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )} \left (-3 (c+d) F_1\left (\frac {1}{2};\frac {1}{2}-m,-\frac {3}{2};\frac {3}{2};\cos ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right ),\frac {2 d \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{c+d}\right )+\left (6 d F_1\left (\frac {3}{2};\frac {1}{2}-m,-\frac {1}{2};\frac {5}{2};\cos ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right ),\frac {2 d \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{c+d}\right )+(c+d) (-1+2 m) F_1\left (\frac {3}{2};\frac {3}{2}-m,-\frac {3}{2};\frac {5}{2};\cos ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right ),\frac {2 d \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{c+d}\right )\right ) \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(3/2),x]

[Out]

(-3*Sqrt[2]*(c + d)*AppellF1[1/2, 1/2 - m, -3/2, 3/2, Cos[(2*e + Pi + 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)
/4]^2)/(c + d)]*Sqrt[1 + Sin[e + f*x]]*(a*(1 + Sin[e + f*x]))^m*(c + d*Sin[e + f*x])^(3/2)*Tan[(2*e - Pi + 2*f
*x)/4])/(f*Sqrt[Cos[(2*e - Pi + 2*f*x)/4]^2]*(-3*(c + d)*AppellF1[1/2, 1/2 - m, -3/2, 3/2, Cos[(2*e + Pi + 2*f
*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)] + (6*d*AppellF1[3/2, 1/2 - m, -1/2, 5/2, Cos[(2*e + Pi +
2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)] + (c + d)*(-1 + 2*m)*AppellF1[3/2, 3/2 - m, -3/2, 5/2,
 Cos[(2*e + Pi + 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)])*Sin[(2*e - Pi + 2*f*x)/4]^2))

________________________________________________________________________________________

Maple [F]
time = 0.07, size = 0, normalized size = 0.00 \[\int \left (a +a \sin \left (f x +e \right )\right )^{m} \left (c +d \sin \left (f x +e \right )\right )^{\frac {3}{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(3/2),x)

[Out]

int((a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^(3/2)*(a*sin(f*x + e) + a)^m, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((d*sin(f*x + e) + c)^(3/2)*(a*sin(f*x + e) + a)^m, x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**m*(c+d*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e) + c)^(3/2)*(a*sin(f*x + e) + a)^m, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (a+a\,\sin \left (e+f\,x\right )\right )}^m\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^m*(c + d*sin(e + f*x))^(3/2),x)

[Out]

int((a + a*sin(e + f*x))^m*(c + d*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________